Résolution de -u'' + u = f sur le cercle

Geoffrey Deperle

Leçons associées:

- 201: Espaces de fonctions. Exemples et applications.
- 220 : Équations différentielles ordinaires. Exemples de résolution et d'études de solutions en dimension 1 et 2.
- 221 : Équations différentielles linéaires. Systèmes d'équations différentielles linéaires. Exemples et applications.
- 246 : Séries de Fourier. Exemples et applications.

Le but de ce développement est de montrer le théorème suivant :

Théorème. Notons $H^1(T)$ l'ensemble des fonctions de $L^2((0,2\pi))$ 2π -périodique de dérivée appartenant à $L^2((0,2\pi))$. Soit $f \in H^1(T)$, une fonction $u \in H^1(T)$ est solution faible de

$$\begin{cases} -u'' + u = f \quad (*) \\ u(0) = u(2\pi) \end{cases}$$

(c'est-à-dire une fonction $u \in H^1(T)$ vérifie $\forall \phi \in H^1(T), \int_0^{2\pi} u' \phi' + u \phi = \int_0^{2\pi} f \phi$) si et seulement si u est de la forme $u = e \star f$ avec $\forall x \in [0, 2\pi], e(x) = \frac{1}{2}e^{-|x|} + \frac{1}{e^{2\pi} - 1}\mathrm{ch}(x)$

Preuve:

Étape 1 : Montrons que $u \in H^1(T)$ est solution faible de (*) si et seulement si $u = K \star f$ où K est une fonction à déterminer.

Analyse:

Soit u une solution faible de (*), On a

$$\forall \phi \in H^1(T), \int_0^{2\pi} u' \phi' + u \phi = \int_0^{2\pi} f \phi \text{ d'où } \int_0^{2\pi} u' \overline{\phi'} + u \overline{\phi} = \int_0^{2\pi} f \overline{\phi}$$

Comme les fonctions considérées sont dans $L^2((0,2\pi))$ d'après la formule de Parseval on a :

$$\sum_{n \in \mathbb{Z}} \underbrace{c_n(u')}_{=inc_n(u)} \underbrace{\overline{c_n(\phi')}}_{=-in\overline{c_n(\phi)}} + c_n(u)\overline{c_n(\phi)} = \sum_{n \in \mathbb{Z}} c_n(f)\overline{c_n(\phi)}$$

car
$$\forall n \in \mathbb{Z}, c_n(u') = inc_n(u).$$

D'où $\sum_{n \in \mathbb{Z}} \left[(1 + n^2)c_n(u) - c_n(f) \right] \overline{c_n(\phi)} = 0.$

Comme l'égalité est vraie pour tout $\phi \in H^1(T)$, avec $\phi_n : x \mapsto e^{inx}$, on a $\forall n \in \mathbb{Z}, c_n(u) = \frac{c_n(f)}{1+n^2}$ d'où u est déterminée par $u = \sum_{n \in \mathbb{Z}} \frac{c_n(f)}{1+n^2} e_n$ (limite L^2 de la suite des sommes partielles).

Synthèse:

La fonction $u: x \mapsto \sum_{n \in \mathbb{Z}} \frac{c_n(f)}{1+n^2} e^{inx}$ est bien définie car $\frac{|c_n(f)|}{1+n^2} \le \frac{||f||_2}{1+n^2}$ et $f \in L^2((0,2\pi))$ d'où $\sum_{n \in \mathbb{Z}} \frac{|c_n(f)|}{1+n^2} < +\infty$ donc u est bien définie et est continue (comme limite uniforme d'une suite de fonctions continues). De plus,

$$\sum_{n\in\mathbb{Z}} \frac{|inc_n(f)|}{1+n^2} \le \underbrace{\left(\sum_{n\in\mathbb{Z}} \left(\frac{n}{1+n^2}\right)^2\right)^{\frac{1}{2}}}_{:=C} \left(\sum_{n\in\mathbb{Z}} c_n(f)^2\right)^{\frac{1}{2}} \le C||f||_2$$

donc u est de classe C^1 et $u \in H^1(T)$.

Ainsi, u est solution de (*) si et seulement si u est de la forme $u = K \star f$ avec $K : x \mapsto \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \frac{e^{inx}}{1 + n^2}$.

Étape 2 : Cherchons une expression explicite de K en résolvant l'équation au sens des distributions

Chercher les solutions faibles d'une équation différentielles revient à chercher les solutions au sens des distributions. Cherchons alors à résoudre l'équation $-T''+T=T_f$ au sens des distributions. Soit e une solution élémentaire, c'est-à-dire une solution au sens des distributions de l'équation $-T''+T=\delta_0$.

Sur \mathbb{R}^{+*} et sur \mathbb{R}^{-*} , on a -e'' + e = 0 donc

$$\exists \alpha, \beta, \lambda, \mu \in \mathbb{R}, \forall x \in \mathbb{R}, e(x) = \begin{cases} \alpha e^x + \beta e^{-x} & \text{si } x \in \mathbb{R}^{+*} \\ \lambda e^x + \mu e^{-x} & \text{si } x \in \mathbb{R}^{-*} \end{cases}$$

Or, d'après la formule des sauts, on a

$$e'' = \{e''\} + (e(0^+) - e(0^-))\delta_0' + (e'(0^+) - e'(0^-))\delta_0$$

= $-e + (\alpha + \beta - \lambda - \mu)\delta_0' + (\alpha - \beta - \lambda + \mu)\delta_0$

d'où on doit avoir

$$\begin{cases} \alpha + \beta - \lambda - \mu &= 0 \\ \alpha - \beta + \lambda + \mu &= 1 \end{cases} \iff \begin{cases} \alpha - \lambda &= -\frac{1}{2} \\ \beta - \mu &= \frac{1}{2} \end{cases} \iff \begin{cases} \lambda &= \alpha + \frac{1}{2} \\ \beta &= \mu + \frac{1}{2} \end{cases}$$

donc
$$e(x) = \begin{cases} \alpha e^x + \mu e^{-x} + \frac{1}{2}e^{-x} & \text{si } x \in \mathbb{R}^+ \\ \alpha e^x + \mu e^{-x} + \frac{1}{2}e^x & \text{si } x \in \mathbb{R}^- \end{cases}$$
 d'où $e(x) = \frac{1}{2}e^{-|x|} + \alpha e^x + \mu e^{-x}$.

Par changement de variable, on peut ré-écrire e(x) sous la forme $e(x) = \frac{1}{2}e^{-|x|} + a\cosh(x) + b\sinh(x)$. Ainsi e est une fonction continue (et non plus seulement une distribution).

Comme e est une solution élémentaire, on a $\forall f \in \mathcal{C}^0((0,2\pi)), e \star f$ est solution de $-T'' + T = T_f$ au sens des distributions donc est solution faible de l'équation -u'' + u = f.

Étape 3 : Conclusion

Montrons que $e \star f \in H^1(T)$,

- $e \star f$ est 2π -périodique car f l'est.
- -- $||e \star f||_2 \le ||e||_1 ||f||_2 < +\infty \text{ car } e \in \mathcal{C}^0((0, 2\pi)).$

— $||(e \star f)'||_2 = ||e \star f'||_2 = \leq ||e||_1||f'||_2 < +\infty$ car $f \in H^1(T)$. donc $e \star f \in H^1(T)$, d'après ce qui précède, $c_n(e \star f) = c_n(K \star f)$ et par injectivité des coefficients de Fourier, on a $e \star f = K \star f$.

Comme l'égalité est vrai pour tout $f \in H^1(T)$, on a e = K (il suffit de tester l'égalité sur des fonctions tests)

Ainsi, pour tout $x \in \mathbb{R}$, $e(x) = \frac{1}{2}e^{-|x|} + a\cosh(x) = K(x)$ donc e est une fonction paire (car K l'est), donc e est une fonction paire (car e l'est), donc e est une

De plus, comme
$$e(0) = e(2\pi)$$
, on a $\frac{1}{2} + a = \frac{1}{2}e^{-2\pi} + a\cosh(2\pi)$ d'où $a = \frac{\frac{1}{2}e^{-2\pi} - \frac{1}{2}}{\cosh(2\pi) - 1} = \frac{1}{e^{2\pi} - 1}$. \square